
J .  FluidMech. (1991), vol. 231, pp.  501-528 
Printed in Great Britain 

50 1 

Onset of three-dimensionality, equilibria, and early 
transition in flow over a backward-facing step 

By LAMBROS KAIKTSISt, GEORGE EM KARNIADAKIS 
AND STEVEN A. ORSZAG 

Mechanical and Aerospace Engineering and Applied and Computational Mathematics, 
Princeton University, Princeton, NJ 08544, USA 

(Received 30 March 1990 and in revised form 8 April 1991) 

A numerical study of three-dimensional equilibria and transition to turbulence in 
flow over a backward-facing step is performed using direct numerical solution of the 
incompressible NavierStokes equations. The numerical method is a high-order- 
accurate mixed spectral/spectral-element method with efficient viscous outflow 
boundary conditions. The appearance of three-dimensionality in nominally two- 
dimensional geometries is investigated at representative Reynolds numbers ranging 
from the onset of three-dimensional bifurcation to later transitional stages. Strongly 
three-dimensional regions are identified through standard correlation coefficients 
and new three-dimensionality indices, as well as through instantaneous and time- 
average streamline patterns and vorticity contours. Our results indicate that onset 
of three-dimensionality occurs at the boundaries between the primary and secondary 
recirculating zones with the main channel flow, the latter being the most stable flow 
component. There is, therefore, strong secondary instability in the shear layers, 
mainly due to the one emanating from the step corner. 

The flow further downstream is excited through the action of the upstream shear 
layers acquiring a wavy form closely resembling Tollmien-Schlichting waves both 
spatially and temporally with a characteristic frequency fi ; upstream, at the shear 
layer another incommensurate frequency, fi, is present. The two-frequency flow 
locks-in to a single frequency if external excitations are imposed a t  the inflow at a 
frequency close to fi or fi; the smaller amplitude excitations, however, may cause a 
strong quasi-periodic response. Such excitations may significantly increase or 
decrease (by more than 20%) the length of the primary separation zone X, at lock- 
in or quasi-periodic states. The equilibrium states resulting from the secondary 
instability at  supercritical Reynolds numbers produce a flow modulated in the 
spanwise direction, with corresponding variations in the reattachment location X,. 
While three-dimensionality explains partially the discrepancy between numerical 
predictions and experimental results on X, at higher Reynolds number Re, the main 
source of discrepancy is attributed to the inflow conditions, and in particular to 
external disturbances superimposed on the mean flow, the latter being the main 
reason also for the somewhat earlier transition found in laboratory experiments. 

1. Introduction 
In the past decade there have been substantial developments in our understanding 

of transition to turbulence with solutions given to some longstanding questions in a 
number of fundamental flows. Most of the work in the past few years has focused on 
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the early transition regime of simple-geometry flows, where novel stability theory in 
conjunction with direct numerical computations have elucidated the role of 
secondary instability (Orszag & Patera 1983) in the transition process. Initially, 
secondary instability was explored for the plane Poiseuille flow ; today, however, this 
is a well-established transition scenario and its validity has been verified for pipe 
flows, boundary layers (Herbert 1988), and open shear flows (Pierrehumbcrt & 
Widnall 1982; Metcalfe et al. 1987). The apparently universal character of the 
secondary instability a t  subcritical Reynolds numbers, preceding an abrupt 
transition to turbulence, has only been realized for flows with simple (non- 
inflexional) mean profiles. Recent stability calculations in complex-geometry flows 
(Karniadakis & Amon 1987 ; Karniadakis, Mikic & Patera 1988) have shown that, 
unlike the planar shear flows, complex-geometry flows exhibit supercritical 
transitions, and that steady three-dimensional equilibrium states can be achieved 
(Karniadakis 1990). In addition, multiple physical interactions occurring among the 
many different flow regions (e.g. streamwise locations with inflexional and fully 
developed flow profiles) with variable stability properties make these flows very 
different from the simple parallel shear flows studied in detail so far. 

Advancing our understanding of transition in complex geometry flows requires 
building a database of transition characteristics of prototype flows. We suggest that 
the flow over a backward-facing step can serve as such a prototype. It consists of 
three main flow components: the shear layer emanating from the step edge, the 
separation zone a t  the channel expansion, and the fully developed channel flow 
further downstream. This flow has received tremendous attention in the last three 
decades (see Denham & Patrick 1974 and Armaly et al. 1983, and references therein) 
and has served as a model of massive flow separation in internal flows as induced by 
sudden changes in the geometry. The emphasis has been mostly on the laminar and 
fully turbulent flow regime where transport measures such as shear stress and heat 
transfer rates were measured and correlated (Aung & Goldstein 1972 ; Vogel & Eaton 
1984). A more systematic set of measurements in the transitional regime, which is of 
interest to us here, was obtained by Armaly et al. (1983) where mean, first-order 
quantities were measured for Reynolds numbers up to  Re = 8000 (a fully turbulent 
regime). 

The large amount of available experimental data stimulated a number of 
numerical studies (Osswald, Ghia & Ghia 1983; Patera 1984; Kim & Moin 1985; 
Sethian & Ghoniem 1988; Ku et al. 1989). I n  the low-Reynolds-number regime a 
unique relationship exists between the Reynolds number (Re), the expansion ratio 
( r ) ,  and the normalized length of the recirculation zone (X,/S), so that new 
numerical methodologies can readily be tested. In  the high-Reynolds-number regime 
the recirculation zone length is uniquely determined by the expansion ratio, so 
similar tests have been performed to validate turbulence models and related 
methodologies (see Karniadakis et al. 1989, and references therein). 

Our interest in the present work is in studying three-dimensionality and steady 
equilibrium states of a wall-bounded separated flow in a nominally two-dimensional 
geometry ; hence, the backward-facing step is a prototype. I n  decomposing the flow 
into its fundamental components we can think of the entire field as represented by 
a (convectively unstable) inflexional profile just downstream of the step and a fully 
recovered parabolic profile in the far field. The question we address therefore is how 
and in what parameter range this idealized model is most susceptible to two- and 
three-dimensional instabilities. Indeed, the bifurcation of the steady, two- 
dimensional laminar flow to three-dimensional flow is likely to  be the primary source 
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FIGURE 1.  Recirculation length, X,, normalized by step height, S ,  versus Reynolds number Re for 
experiment and two-dimensional simulations : 0, experimental data (Armaly et al) ; x , Kim & 
Moin; 0, Osswald et al. ; A, present work. 

of discrepancies appearing in comparisons of (two-dimensional) numerical predictions 
and experimental data above a characteristic Reynolds number. I n  figure 1, we 
summarize the numerical results of two-dimensional calculations done by several 
investigators corresponding to  different methodologies ; also included are the 
experimental data of Armaly et al. (1983) for the same step geometry with expansion 
ratio r = 1.94. Indeed, we observe that irrespective of the numerical approach 
followed, there exists a consistent underestimation of the recirculation length X, 
above Reynolds number Re x 600. 

Bifurcation to  three-dimensionality , however, depends strongly on the location ; 
while mean velocity profiles located upstream are inflexional and correspond to two- 
and three-dimensional growth rates that are almost equal in magnitude, parabolic 
profiles in the downstream channel section are characterized by a more hierarchical 
bifurcation process. I n  the latter case a primary instability leading to  an oscillatory 
state is followed by the secondary instability. Therefore, in order to quantify globally 
the three-dimensionality of the entire field, it is appropriate to  introduce pointwise 
indices to measure the spanwise inhomogeneity and spanwise correlations ; these 
indices should be carefully measured and/or computed. The temporal response and 
structure of separated flows is also a strong function of the disturbance level. 
Unsteadiness can lead to completely altered flow patterns as has been demonstrated 
in the complex-geometry flows studied by Ghaddar et al. (1986) and Karniadakis 
et al. (1988). Controlled experiments, therefore, which focus on these specific issues are 
needed. 

In  this work, we use a high-order numerical method extended here to three- 
dimensions to address these questions and provide answers in a systematic and 
quantitative form through detailed numerical experimentation. A similar metho- 
dology has been used in the past to study highly unsteady, two-dimensional free- 
shear and wall-bounded shear flows (Karniadakis & Triantafyllou 1989 ; Karniadakis 
et al. 1988; Ghaddar et al. 1986). 

The paper is organized as follows. In  $2, we present the governing equations and 
introduce the numerical methodology employed for our investigation ; a more 
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detailed discussion and related references are given in the Appendix. In $3, we 
present results of two- and three-dimensional simulations for steady and unsteady 
flow fields. In $4, we discuss in detail the flow structure and quantify the spanwise 
variation of the flow using three-dimensionality indices. In  $5, the effect of external 
excitations, of non-parabolic inflow profiles, as well as the effect of no-slip wide walls 
is investigated. Finally, in $6 we summarize the results and present a possible 
scenario of three-dimensionality and early transition of the flow over a backward- 
facing step and relate it to the transition of shear layers and plane channel flows. 

2. Methodology 

and subjected to the incompressibility condition, 
We consider Newtonian fluids governed by the Navier-Stokes equations of motion 

W - u = O  in 52, (1b)  

where u(x ,  t )  is the velocity field, p is the static pressure, and the Reynolds number 
Re is defined as Re = 37,,,(2h)/v; here all lengths are non-dimensionalized with h the 
height of the inlet channel. Also, U,,, is the maximum velocity a t  the inlet, v is the 
kinematic viscosity, and p is the density ; D denotes total derivative. 

The numerical solution of the above system of equations will be obtained in the 
domain 52 shown in figure 2. The step has a (non-dimensional) height S = 0.94231, 
while the spanwise length is L, = 27c corresponding to wavenumber /3 = 1. In  most of 
the calculations presented here we assume periodic boundary conditions in the 
spanwise direction (boundary rs), while a parabolic velocity is prescribed a t  the 
inflow boundary 4. In $4 we examine the effect of non-parabolic inflow profiles, as 
well as the effect of no-slip a t  the sidewalls. A t  the downstream boundary mixed 
Neumann/viscous-sponge boundary conditions (Tomboulides, Israeli & Karniadakis 
1991) are prescribed which eliminate spurious numerical instabilities a t  the outflow 
even for very high-Reynolds-number flow and provide better accuracy than the 
previously employed extrapolation outflow boundary conditions (Karniadakis & 
Triantafyllou 1989). 

The above system of equations (1) is solved by employing three-dimensional 
spectral-element discretizations in the domain 52 and high-order splitting schemes for 
the time integration. A brief review of both discretizations as well as a detailed list 
of related literature can be found in the Appendix. 

3. Numerical simulations 
3.1, Two-dimensional simulations 

In this Section, simulations of the two-dimensional flow are presented corresponding 
to a parabolic inflow profile imposed a t  approximately one step height upstream of 
the step expansion. Experimentation with the parabolic profile imposed a t  different 
upstream locations results in negligible differences in the flow field, unless the 
Reynolds number is very low (Re < 200); for Re < 200, the value of X, is 
overpredicted by almost 10% if the inflow boundary is taken exactly a t  the step 
expansion. To investigate the effect of the outflow, here we consider two different 
domains corresponding to outflow length X, = 34 and X o  = 60) (see figure 2a). 
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FIGURE 2. (a) Sketch of the step geometry defining various geometrical parameters. A skeleton of 
the three-dimensional spectral element decomposition of the domain is indicated. ( b )  Spectral- 
element discretization of an (z, y)-plane. The same discretization applies on all planes z = const. 
(The 5 and y scales are not the same; here S = 0.94, and typically X, = 34.) 

Again, the flow is affected very little in the lower-Reynolds-number regime, while for 
Re >, 700 differences in the value of X, of approximately 2 % were observed. Finally, 
experimentation with higher resolution per spectral element (using eleventh-order 
polynomial expansions instead of eighth) produced identical results for all 
simulations, indicating that the spatial resolution employed is sufficient for the range 
of Reynolds number considered here (Re < 1300). Regarding time accuracy, tests 
with schemes of order J = 2 and J = 3 (see Appendix) as well as time step At = lo-' 
and resulted in differences of approximately 1 % . Typical two-dimensional runs 
required 10000 time steps (30 min on a Cray-Y/MPl) ; three-dimensional cases ($3.2) 
were typically run in increments of 3000 time steps (I  h on a Cray-Y/MPl). A more 
detailed discussion of validation tests can be found in Kaiktsis (1990). 

The flow over the backward-facing step considered here is two-dimensional and 
non-oscillatory at Re < 500. This was verified in our three-dimensional simulations, 
where initial spanwise disturbances introduced into the flow decayed exponentially 
to zero ; the experimental findings by Armaly et al. also support our conclusion. In 
figure 3 we plot the steady-state streamline pattern, where we see that in addition to 
the primary recirculation zone there exists a secondary separation zone near the 
upper wall due to the adverse pressure gradient caused by the sudden expansion at 
the step edge. The flow recovers rapidly downstream to a parabolic profile. In the 
laminar regime the recirculation length X, scales with the Reynolds number, i.e. 
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FIGURE 3. Steady-state streamlines at Reynolds number Re = 500. 
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FIGURE 4. Time history of streamwise velocity component at Re = 700. (a) Downstream point 
PI (x = 20.3; y -0.821); (21) upstream point Pz (x = 10.4; y = -0.650). 

X,/S cc Rem. The exponent m decreases with the expansion ratio r = H / h ;  for r = 
1.94, m(r = 1.94) x 0.75. For other values of r the values of m obtained with our 
simulations coincide with the results of Thangam & Knight (1989). 

At Reynolds number Re = 700 the flow has already undergone its first bifurcation. 
In figures 4(a) and 4 ( b )  we plot the time history of the streamwise velocity at the 
point PI located a t  (x = 20.3; y = -0.821) downstream in the channel section, and a t  
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FIQURE 5. Streamlines at Re = 800: (a) instantaneous flow, ( b )  time-average flow. 

~~ 

the upstream point Pz located at  (x = 10.4; y = -0.650), respectively. The frequency 
of the oscillation is the same at  these points (as well as a t  various other points we 
traced between locations) with value f, = 0.104. 

The flow remains oscillatory as we increase the Reynolds number. In figure 5 (a)  we 
plot the instantaneous streamline pattern after a steady oscillatory state has been 
reached. The size of both the lower and upper wall bubbles are significantly 
increased, while smaller size vortices are detached, shed from the walls, and 
convected by the main flow. However, the time-average flow (see figure 5b)  
corresponds to a fully developed channel flow downstream, while the secondary 
bubble near the upper wall slightly shrinks in size. The fact that the size of the time- 
average primary separation zone remains essentially unchanged from its in- 
stantaneous size indicates that the velocity-pressure fluctuations are significantly 
smaller in this region - the leeward face of the step. At  this Reynolds number and 
at the point PI in the channel section, the power spectrum exhibits a single peak 
corresponding to a new lower frequency f, = 0.054 (figure 6 a ) ,  while at the upstream 
point Pz the power spectrum reveals the existence of a second frequency fz = 0.104 
(figure 6b) ,  apparently associated with the shear layer emanating from the step edge. 
This frequency has exactly the same value as the one identified a t  the lower Reynolds 
number Re = 700. The third peak shown in figure 6(b )  is identified as a linear 
combination of f,, fz, i.e. +(fl-fz). Careful examination of power spectra cor- 
responding to various other locations upstream as well as downstream reveals no 
other fundamenta.1 frequencies of the system distinct from linear combinations of 
fl,fz. Comparison of the temporal response at  the two Reynolds numbers therefore 
suggests that the flow has undergone a second bifurcation at Re = 800. 

The coexistence of two incommensurate frequencies at  the relatively low Reynolds 
number Re = 800 is of course consistent with the fact that this is a spatially 
developing flow exhibiting a very different spatial structure downstream. Indeed, the 
perturbation field in the wavy part of the flow (figure 7)  shown here in the form of 
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FIGURE 6. Power spectra in time at Re = 800 (two-dimensional simulation). The units are the 
natural units based on the computation. (a) Downstream point P,, ( b )  upstream point Pz. 

FIGURE 7. Streamlines of the time-fluctuating velocity field u’ in the downstream region (z > 20; 
Re = 800; two-dimensional simulation). Here u’ = v - @ ,  where  is the time-average velocity. These 
streamline patterns resemble those of channel Tollmien-Schlichting waves. 
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FIGURE 8. Power spectrum in time at Re = 1095 at the downstream point PI 
(two-dimensional simulation). 

instantaneous streamlines for z 2 20 exhibits close resemblance with channel 
TollmienSchlichting (T-S) waves corresponding to a streamwise wavenumber 
a = 1.605. An eigenvalue temporal analysis employing the OrrSommerfeld equation 
(Orszag 1971) gives an eigenfrequency for the least-stable eigenmode to within 10% 
from fl = 0.054 computed through direct simulation of the entire flow field. The 
corresponding growth rate of T i 3  waves at this Reynolds number predicted by the 
OrrSommerfeld equation is u = -0.1045, indicating stable subcritical behaviour. In 
a plane channel therefore under identical conditions these T S  waves are not present ; 
however, in the step geometry these 'native', subcritical T S  waves are triggered by 
the unstable shear layer emanating upstream. This instability of the shear layer, 
which occurs a t  low Reynolds number can drastically change the growth rate of the 
subcritical T S  waves downstream (making u positive), while only slightly modifying 
their eigenfrequency (by approximately 10%). This seems to be a universal 
behaviour in complex-geometry wall-bounded flows as first suggested by Karniadakis 
& Amon (1987) for streamwise periodic flows; here we verify that such behaviour is 
also valid for wall-bounded spatially developing flows. 

At  higher Reynolds number the power spectra are more wideband and it is 
therefore difficult to identify dominant frequencies in as clear a way as for Re = 800. 
At Reynolds number Re = 1095 (figure 8), for example, the power spectrum of the 
streamwise velocity at the point Pl downstream still exhibits a maximum at the 
corresponding T S  eigenfrequency shifted to a lower value in accordance with the 
prediction of the Orr-Sommerfeld equation. However, the presence of other 
frequencies of smaller amplitude is also seen with the most pronounced one identified 
as g2, the latter being shifted somewhat. Perhaps the most important difference in 
the flow field at this Reynolds number is that the dominant frequency everywhere 
in the field (upstream locations included) is the channel frequency fl ; for example at 
point P2 the power density at f2 is only a of the power density peak at fl. 

Our results suggest that the transition process starts at  approximately Re x 700 
with fluctuations becoming increasingly larger as Re approaches 1000. This effect is 
illustrated in figures 9(a)  and 9 ( b ) ,  where we plot the histogram of the vertical 

17-2 



510 L. Kaiktsis, G .  E .  Karniadakis and S. A .  Orszag 

250 300 I 
6 200 e 

150 

100 

50 

0 
-0.03 -0.02 -0.01 

: 0 II 0.01 d 
0.02 0.03 

I 

400 500 i 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

v-velocity fluctuation 

FIQIJRE 9. Histogram of w-velocity fluctuations (y-direction) in the shear-layer region at P2 
(two-dimensional simulation) : (a) Re = 800, ( b )  Re = 1095. 

component of velocity fluctuations (y-component) of point P2 in the shear-layer 
region a t  Re = 800 and 1095, respectively. In  the latter case, the width of the 
distribution is larger by an order of magnitude. 

3.2. Three-dimensional simulations 

Systematic experimentation employing both two- and three-dimensional simulations 
suggests that the flow first becomes oscillatory at Re, w 700. This Reynolds number 
is higher than the one found in the experiment of Armaly et al. (1983). However, this 
is justifiable since the exact critical Reynolds number Re, is strongly influenced by 
the existence of external, uncontrollable disturbances in the physical experiment (see 
55).  In order to approximately determine Re,,, a number of simulations were run with 
an initial perturbation imposed as an external forcing for some initial period and 
removed thereafter, following the time trace of all velocity components a t  later 
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FIQURE 10. Time trace of velocity components at downstream point P, at Re = 700: 
(a )  streamwise component, ( b )  vertical component, (c) spanwise component. 

times. Similarly, for the three-dimensional simulations an initial perturbation is 
imposed in the third direction and subsequently the response of the flow is followed 
in time. 

At  subcritical Reynolds numbers all initial perturbations in the velocity field 
decay to zero. Time traces at  Re = 620 of the spanwise component reveal a rapid 
decay to zero suggesting that the flow returns to two-dimensionality (Kaiktsis 1990). 
Cross-examination of the other two velocity components suggests in addition that 
the flow reaches a time-independent state. A t  higher Reynolds numbers, all velocity 
components vary in time as seen in figure 10(a-c), where the three velocity 
components at PI are plotted at  Re = 700. These oscillations have a bounded 
amplitude suggestive of the existence of stable three-dimensional states. The 
frequency of these oscillations is fi = 0.104, exactly the same as that predicted in 
two-dimensional simulations at  the same Reynolds number. It is, therefore, shown 
here that the primary bifurcation practically coincides with the secondary one, at  
which the flow becomes three-dimensional. This transition process of the flow from 
steady two-dimensional laminar states to unsteady three-dimensional ones should be 
attributed to the upstream inflexional part of the flow which, according to linear 
stability results, corresponds to two- and three-dimensional growth rates of almost 
equal magnitude (Metcalfe et al. 1987). This process is very different from the 
transition in wakes (Karniadakis & Triantafyllou 1991) where the critical Reynolds 
number for the secondary bifurcation is four to five times the critical Reynolds 
number of the primary bifurcation, suggesting a hierarchy of transition stages. 

Next we simulate the flow at Re = 800. A qualitative description of the flow field 
is given in figure 11 ( a d )  (plate 1) in terms of instantaneous streamlines. In figure 
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FIGURE 12. Power spectra in time at Re = 800 (three-dimensional simulation). 
(a) Downstream point PI, (b )  upstream point P,. 

11 (a) ,  a three-dimensional view of the streamlines emanating from the same vertical 
position (y = 0) is shown. This plane is essentially a t  a location away from the shear 
layers following the bulk flow, so it describes the most stable component. If another 
vertical location is selected closer to the lower wall (figure 11 b,  y = -0.48) a 
completely different pattern is produced suggestive of strong variation in the 
spanwise direction. In  fact, some of the streamlines follow a closed-loop trajectory 
that forms the recirculating zone at certain spanwise locations, while the rest are 
subjected to  strong modulation as they propagate downstream. A more illustrative 
pattern of streamlines is shown in figure 11 (c) corresponding to a starting location at 
y = - 0.52 inside the separation zone ; again not all streamlines form closed-loop 
shapes. On the upper wall, where two-dimensional simulations reveal the existence 
of a secondary recirculation zone the picture is very similar; in figure 11 ( d )  
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FIGURE 1 1 .  Families of instantaneous three-dimensional streamlines emanating from different y-locations 
(Re=800): (a) y=O, (6) y=-0.48, (c) y=-0.52, (d) y=0.45. 

KAIKISIS.  KARNIADAKIS & ORSZAC (Facing p.  512) 
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FIGURE 13. Time-average streamwise velocity distribution along the spanwise direction z 
(Re = 800): (a )  x = 6.0, y = -0.6; ( b )  x = 27.5, y = 0. 

streamlines emanating from y = 0.45 (very close to the upper wall) show a strong 
modulation, which is initiated at the region of the secondary bubble and persists 
downstream. 

As in the two-dimensional simulations, the flow is quasi-periodic a t  Re = 800. I n  
figures 12 ( a )  and 12 ( b )  we plot the power spectra of streamwise components a t  points 
PI and Pz (similar to  plots in figure 6 for the two-dimensional simulation). The co- 
existence of two incommensurate frequencies in the system is responsible for the 
quasi-periodicity ; in fact, the frequency fi corresponding to two-dimensional T S  
waves remains the same, while the upstream frequencyf, is reduced by 10%. This 
shift of frequency is therefore associated with the three-dimensionality of the flow, 
the effects of which are apparently more pronounced in the upstream inflexional 
region. 

The instantaneous variation in the spanwise direction produces a modulated time- 
average flow through nonlinearity. The amplitude of this modulation varies from 
location to location as seen in figures 13 ( a )  and 13(b)  in which streamwise profiles are 
plotted at an upstream station (z = 6.0) and a downstream station (z = 27.5) at 
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FIGURE 14. Streamwise component of the fluctuating velocity u‘ = u--& as a function of z at 
r = 6.0, y = -0.6 (Re = 800). 
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FIGURE 15. Time-averaged normalized recirculation length (X,/S) versus spanwise distance z : 
A, Re = 800; 0 ,  Re = 1095. 

Re = 800. The modulation is significantly stronger a t  Re = 1095, which is well above 
criticality. The fact that the wavelength of the modulated pattern is substantially 
smaller than the spanwise size of the domain is an indication that the selected 
pattern corresponds to the most unstable mode resolved by the simulation and thus 
is not affected by the periodic domain. An interesting feature of the spanwise 
structure recently discovered in three-dimensional wake flows (Karniadakis & 
Triantafyllou 1991) is the relation between the wavelength x of the time-average 
streamwise flow velocity and its fluctuating counterpart A’ : linear theory arguments 
and direct simulations suggest that 2x = A’, at least for slightly supercritical 
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Reynolds number. This spatial structure is not present, however, in the flow over a 
step (see the fluctuation profile plotted in figure 14) as the separated flow upstream 
corresponds to a convectively unstable pattern (compared to absolutely unstable 
modes in wake flows). 

To assess the effect of the spanwise modulation in the location of primary and 
secondary separation bubbles, we next plot X,/S along the z-direction for Re = 800 
and 1095 ; in figure 15 the time-average values for both cases are shown. For Re = 800 
the equivalent two-dimensional field (V), obtained by averaging in z and time (see 
notation in §4), gives a value of X,/S which differs by less than 1 Yo from the one 
obtained by a purely two-dimensional computation. For Re = 1095, (V) gives an 
increase in X,/S of 6.6 %. 

4. Spanwise variation 
In this Section, we address the question of the onset of three-dimensionality. The 

mean flow field varies in the z-direction, so global indices should be introduced that 
measure three-dimensionality and more general features of inhomogeneity in the 
spanwise direction. The key idea here is to associate the actual three-dimensional 
time-dependent field to an equivalent two-dimensional field a t  the same Reynolds 
number. This equivalent field is constructed from the results of the three-dimensional 
simulation by averaging instantaneous fields along the spanwise direction and in 
time. The streamline pattern of such an equivalent two-dimensional flow field at 
Re = 800 is plotted in figure 16. 

Spanwise flow variation can be quantified through the use of several indices. First, 
there is the time-dependent inhomogeneity index q,  (suggested to us by Dr Z. S. She) 

where ( )  denotes averaging in the spanwise direction. This index is a relative 
measure of the non-uniformity of the w-velocity component in the spanwise direction 
compared to the non-uniformity of all three components. The definition of ql assumes 
that the flow is fully three-dimensional ; for two-dimensional regions both the 
numerator and denominator are zero so this index becomes meaningless. A more 
appropriate index for quantifying the onset of three-dimensionality is given by 

where the three-dimensional fluctuating quantities are defined as u’ = u- (u), while 
the two-dimensional ones are defined as u” = (u)-(a) (here the overbar denotes 
time average), and similarly for the other components. According to this definition, 
two-dimensional unsteady states correspond to qz = 0, while the definition of qz 
breaks down for steady two-dimensional laminar states. These latter states can be 
identified by a third three-dimensionality index defined directly from the 
instantaneous velocity components as 

Steady two-dimensional states are then characterized by q3 = 0. All three indices 
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defined in (2) are needed as they all assess three-dimensionality and inhomogeneity 
in different flow states. 

A global picture of variation in the z-direction can be constructed based on the 
time-average values Tl(x, y) as shown in figure 17 (plate 2). A careful comparison of 
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Lower wall region: S is the domain S, for y < -0.2; (b )  upper wall region: S is the domain S, for 
y 2 -0.2. 

the equivalent spanwise-averaged field (figure 16) and this plot suggests that there 
exists a remarkable relation between the average 171 map and the flow field: high 
values of ?il are observed at the boundaries of the two separation zones and the bulk 
of the flow, the latter being the most stable component. It is thus concluded that 

. three-dimensionality is initiated in those regions. High values of the index are also 
observed downstream along the extension of the shear layers passing through these 
highly three-dimensional regions. The unphysical high values of the index right a t  
the inflow are an artifact as the definition of vl breaks down in purely two- 
dimensional states. The above results on the onset of three-dimensionality are also 
verified if the time-average indices q2, T3 are employed. More quantitatively, profiles 
of these latter indices are shown in figure 18 (a ,  b )  at a characteristic location through 
the primary separation zone (x = 5.0). Both q2 and V3 peak at  exactly the same 
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FIQURE 20. (a)  Correlation coefficient C(s = 4.0, y = -0.821 ; 0, z )  versus spanwise separation z 
at Re = 800 : 0,  pressure ; 0 ,  u-velocity ; A, w-velocity. ( b )  Pressure correlation coefficient 
C(z,y;O,n) for the flows at Re = 800 (m), and 1095 (A).  Here (z,y) are the coordinates of the 
points Q6, (i = 1, .  . . , 4 )  defined in the text. 

(x, y)-point. At another characteristic position through the reattachment point, the 
maxima of T3 are very close to the lower and upper walls within the shear layers 
formed a t  the boundaries of the two separation bubbles. Further downstream, all 
indices follow the spatial evolution described in figure 17. 

Since there are clearly two distinct regions where onset of three-dimensionality 
occurs, namely the region 1.9, in the lower half of the domain and the region Xu in the 
upper part of the domain, it is appropriate that we examine them separately. Taking 
the lower part first we plot in figure 19 (a) the (2, y)-position of the maxima of T2 and 
T3. A similar plot can be constructed for the upper region S,  (see figure 19b). It is clear 
from these figures that all indices we have introduced here are very sharp measures 
of three-dimensionality, and provide a consistent global picture of the spatial 
evolution of the three-dimensional instability. 
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A standard way to identify spanwise variation is through two-point correlations 
of a quantity computed at  the same (x, y)-point and different z-locations. The 
corresponding spanwise correlation coefficient is defined as 

where qi and qj denote fluctuations in time of the quantity at  points (2 ,  y, zi), 
(2 ,  y, z,), and the overbar indicates time averaging as before. Here we trace all field 
quantities at  four characteristic ( x ,  y)-locations : inside the recirculation zone Q ,  = 
(x l  = 4.0, y1 = -0.821), upstream in the shear layer Q2 = (xZ  = 10.4, y2 = -0.650), 
above the reattachment point Q,  = (x3  = 12.3, y3 = -0.821), and at a point further 
downstream at Q4(x4 = 20.3, y4 = -0.821). Four different z-locations were examined: 
z = 0, 0.05Lz, 0.5Lz, and 0.95Lz. A typical result for the correlation coefficient 
C(xl, y, ; 0, z )  at the location (xl, yl) (at Re = 800) is shown in figure 20(a). The general 
conclusion is that the pressure exhibits a higher spanwise correlation than the 
velocity field. The magnitude of three-dimensionality is indicated by examining the 
correlation of pressure at  the fixed spanwise separation z = O.5Lz (see figure 20 b ) .  The 
rapid decrease in this correlation in the reattachment zone as the Reynolds number 
increases is consistent with the scenario of abrupt transition proposed earlier. 
Conclusively, high correlation is obtained in the innermost part of the recirculating 
zone and in the bulk of the flow downstream, while lower correlations are obtained 
at  the shear layer and in the region above the reattachment point. 

5. Non-ideal flow conditions 
5.1, External excitation 

In this Section, we report results of a forced experiment simulating the flow over a 
backward-facing step, where the inflow boundary condition is modified to include 
small-amplitude time-periodic excitations superimposed on the parabolic basic 
profile. In particular, the flow is excited at its two fundamental frequencies fl and f 2  
as well as a t  two incommensurate frequencies f T = gfi (where g = 0.618.. . is one half 
of the golden ratio), and f = 0.565. We perform two sets of experiments with the 
amplitude of the excitation at  E = 0.01 and E = 0.05, respectively. The objective of 
the forced experiment is twofold: first, to verify that the two frequencies fl and f2 
present a t  Re = 800 are the two fundamental frequencies of the flow corresponding 
to the channel flow and the upstream shear layer respectively; and secondly, to 
assess the effect of free disturbances (unavoidable in a laboratory experiment) on 
transition, and in particular on such readily observed measures as the time-average 
size of the two separation zones. 

Past experience suggests that even small-amplitude excitation can completely 
alter the pattern of a flow especially in the presence of separation, which increases the 
receptivity region (Ghaddar et al. 1986 ; Karniadakis & Triantafyllou 1989). The 
most dramatic response typically occurs at  resonant conditions, a t  which the flow 
locks-in to a single frequency state if the excitation amplitude exceeds a (small) 
threshold amplitude. To test these ideas we first perform a two-dimensional 
simulation at  Re = 800, imposing an excitation of amplitude E = 0.01 and frequency 
f ,  = fi. It is seen from the time spectra plotted in figure 21 (a )  (at point P,) that 
although the dominant frequency of the response is the excitation frequency, the 
shear-layer frequency is still present. In fact, this forcing results in a more precisely 
defined quasi-periodic oscillatory state. Repeating the experiment at  higher 
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FIGURE 21. Power spectra in time at point P, for the forced flow of frequency f, at Re = 800. 
(a) E = 0.01 ; f, = f,. ( b )  E = 0.05; f, =f,. 

amplitude B = 0.05 the flow locks-in to a single frequency state as shown in figure 
21 ( b ) ,  where the second natural frequency has completely disappeared, giving rise to 
superharmonics. The corresponding change in X ,  is now very different than 
previously, since X ,  decreases by 17 %. This is of course intuitively correct ; at the 
lock-in state the enhanced Reynolds stresses due to resonant excitation produce an 
increased apparent viscosity that reduces the size of the separation region. 

Repeating the latter experiment at  the second natural frequency fi and amplitude 
B = 0.05 a lock-in state is established that corresponds to a further decrease in 
X , / S  = 9.25, a decrease of 24% as compared to the corresponding value of the 
unforced case. If the flow is disturbed at  an incommensurate frequency f r  as 
described above, a three-period state (at the low amplitude E = 0.01) or a lock-in 
state (at the higher amplitude B = 0.05) can result, which lead to an increase in X ,  
by 2.2 and 0.9%, respectively. So far, these results indicate that low-amplitude 
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excitations lead to an increase in X,. This can be attributed to the fact that the time- 
average momentum influx is increased, with no significant changes in the Reynolds 
stress distribution. To further confirm this assumption, we perform an experiment at 
a higher frequency f = 0.565; in this case an increase is obtained again in X,, by 
2.6%. The results of the above experiment are summarized in figure 22; it is seen 
that even the 1 % excitation can lead to approximately a 5 YO increase or decrease in 
the separation length X,, which reflects the wide receptivity region of separated 
flows. 

5.2.  InJlow mean projiles 
In spatially developing flows the velocity distribution of the incoming flow can 
greatly alter the transition process. In this Section, we examine this effect of the 
inflow velocity profile in a manner similar to the last Section. In  particular, we 
consider two non-parabolic inflow distributions and compare the results to our 
standard parabolic inflow case studied in detail here. In all cases, the m a s  flow rate 
is kept constant equal to Q = Q non-dimensional units ; the kinematic viscosity is also 
kept constant. For the standard parabolic profile case, these experiments correspond 
to Re = 500 (see figure 3). 

The additional profiles considered are a symmetric triangular profile and an almost 
uniform (blunt-like) profile ; these profiles are fully specified by the requirement that 
Q = I. The results of the simulation reveal significant changes in the flow pattern, 
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most readily observed by comparing the relative size of the primary and secondary 
recirculating zones. This is graphically illustrated in figure 23, where the separation 
streamlines are plotted for the lower and upper wall for all three cases. In more 
quantitative form, the triangular inlet profile produces a recirculation length X, 
which is 18.4% longer than the parabolic inlet profile case. In the case of a blunt 
inflow profile, however, the value of X, is decreased by 26.9 YO. The position as well 
as the size of the secondary bubble in the upper wall is similarly affected. 

5.3. Effect of sidewalls 
To further explore other possible influences on the flow structure, the geometry (see 
figure 2) was modified at the sides so that solid (no-slip) walls replaced the periodic 
conditions. All simulations in this case were run at  Re = 800, with a parabolic profile 
imposed at  inflow. The distribution of (Gauss-Lobatto-Legendre) collocation points 
(9 and 12 for two different calculations) is such that higher resolution is placed closer 
to the sidewalls. The spanwise distance was kept the same, L, = 2x, although the 
distance between the sidewalls in the physical experiment (Armaly et al. 1983) is 
more than seven times our L,; however, the resolution requirements for this 
laboratory experiment by far exceed the computational resources available at  the 
present time. The results of our simulation indicate that, as a function of spanwise 
location, the recirculation length X, peaks midway between the sidewalls, with the 
average value a t  the centreline being approximately 4 %  shorter than the 
corresponding X, of the periodic case. 

6. Discussion 
I n  this paper, we have investigated numerically the onset of three-dimensionality 

and resulting flow states in the early transitional regime for flow over a backward- 
facing step. Our results suggest that the steady laminar flow bifurcates to a three- 
dimensional oscillatory state the first time the flow loses stability, implying that a 
secondary instability develops a t  essentially the same critical Reynolds number Re, 
as the primary bifurcation. This finding is based on extensive numerical 
experimentation with different forms of external excitation (see Kaiktsis 1990) ; a 
more detailed study requires a multi-dimensional numerical bifurcation analysis and 
prohibitively expensive computations. In effect, therefore, all unsteady states of the 
flow are three-dimensional and develop for Reynolds number Re 2 Re, x 700. Onset 
of three-dimensionality occurs in specific regions of the flow determined by the 
separation regions, and, in particular, at  the boundaries between the two separated 
stagnant flow zones and the bulk of the flow. This idea has been quantitatively 
verified through standard spanwise correlation coefficients and also by three different 
types of inhomogeneity indices v1, v2, q3 introduced in this work. 

The resulting three-dimensional states are ‘stable ’ at finite amplitudes. Slightly 
supercritical states (Re > 700) are periodic with the shear-layer frequency f 2  

dominating everywhere in the field. At Reynolds number Re > 800 quasi-periodic 
states are formed which are characterized by two frequencies fi and f i  that reflect the 
basic structure of the flow, namely the channel parabolic flow downstream and the 
shear layer upstream, respectively. An eigenvalue analysis reveals a close 
resemblance of the fluctuating velocity field downstream with channel Tollmien- 
Schlichting (T-S) waves, typically encountered at higher Reynolds number. The 
presence of an unstable shear layer upstream, however, causes excitation of these 
‘native’ T-S waves even at strongly subcritical Reynolds numbers (i.e. Re = 800). 
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FIGURE 25. Streamlines of the mean flow at Re = 45000. 

The exact nature of the breaking of the quasi-periodic states as Re increases has not 
yet been determined. However, power spectra in time at Re = 1095 show a much 
richer frequency content. Careful examination of frequency spectra at Re = 800 a t  
sixteen different locations reveals a continuous shift of the maximum power spectral 
density from fi and f2 from location to location. In  fact, at  certain locations the 
spectral density peaks either at a superharmonic 2fi or at a subharmonic ifi. The 
corresponding pairs (2f1, fi), or (ti, if2), therefore, have very close values. According 
to the theory proposed by Karniadakis & Triantafyllou (1989) quasi-periodicity, 
lock-in states, or weakly chaotic states are possible, depending on threshold 
amplitude. This ‘pattern competition scenario’ to chaos, first put forward by 
Ciliberto & Gollub (1984), may be applicable here as a possible alternative to the 
RTN scenario (Newhouse, Ruelle & Takens 1978) postulated for quasi-periodic flows. 
This issue however should be further investigated in future work. 

Although the backward-facing step geometry considered here is two-dimensional, 
the time-average flow acquires a modulated spanwise structure. This result is a 
fundamental difference from simple-geometry non-inflexional flows (e.g. plane 
Poiseuille flow), where the mean flow varies only in the direction normal to the walls. 
Recent studies on three-dimensional wakes formed behind two-dimensional cylinders 
(Karniadakis & Triantafyllou 1991) suggest that in this case the mean flow also 
varies in all three dimensions. This three-dimensionality in the mean produces a 
streamwise vorticity distribution with a rib-like structure similar to the one observed 
in compressible planar wakes (Chen, Cantwell & Mansour 1989). In figure 24 (plate 
3) we plot streamwise vorticity contours at Re = 800 for different spanwise ( a d )  and 
horizontal (e-h) planes ; vorticity streaks emanating from the two walls are clearly 
shown in the side views (notice that the scale is highly compressed in the streamwise 
direction for plotting purposes). The plane corresponding to y = - 1.442 3 1 coincides 
with the lower wall and hence the large magnitude of vorticity; in contrast, small 
variations are shown in the bulk of the flow (y = -0.4). 

The flow over a backward-facing step with expansion ratio r x 2 becomes 
turbulent at  Re = 5000 according to the experimental results of Armaly et al. (1983). 
Recent work using spectral-element discretizations combined with renormalization 
group techniques (Yakhot & Orszag 1986; Karniadakis et al. 1989) in fact predicts 
transition to turbulence at  approximately the same Reynolds number. At high 
Reynolds number the flow acquires a different structure, characterized by a shorter 
primary separation zone as well as the appearance of a multi-eddy structure at the 
junction of the vertical and lower wall inside. This latter feature has been observed 
experimentally by Tani, Inchi & Komoda (1967) and simulated using spectral 
elemenkenormalization group technique computations at Re = 45 000 (see figure 
25; Karniadakis et al. 1989). Simulations for the geometry considered here at 
Re = 4444 indicate that the multi-eddy structure is also a feature of the late tran- 
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FIGURE 26. Streamline pattern of the equivalent two-dimensional velocity field (c )  at Re = 4444. 

sitional regime. This is demonstrated in figure 26, where we plot the equivalent two- 
dimensional velocity field ( V ( x ) )  in the form of streamlines. In  work still underway 
we are studying the flow structure at these Reynolds numbers in the late transitional 
and early turbulent regime using both direct and large-eddy simulations based on 
renormalization subgrid modelling techniques. These results will be reported later. 

Financial support for the current work was provided by grants from the NSF 
(CTS-8906911 and CTS-8906432) and by ONR Contract N00014-82-C-0451. Most of 
the computations were performed on the Cray-Y/MP at the Pittsburgh Super- 
computing Center, and at the Numerical Aerodynamic Simulation Facility a t  NASA 
Ames. 

Appendix 
A 1. Semi-discrete formulation 

The time-discretization employs a high-order splitting algorithm based on mixed 
stiffly stable schemes (Karniadakis, Israeli & Orszag 1991). Considering first the 
nonlineaf terms we obtain 

J-1 

8- aq d - 9  J-l 

= 'c p*[-Ncun-9)1, (A l a )  
9-0 

9-0 
At 

where N( Vn) = 8 [u" - Vu" + V - ( u " ~ " ) ]  represents the nonlinear contributions written 
in skew-symmetric form at time level (n  + 1) At, and aq, p, are implicit/explicit 
weight coefficients for the stiffly stable scheme of order J (see Karniadakis et al. 
1991). The next substep incorporates the pressure equation and enforces the 
incompressibility constraint as follows : 

v.6 = 0. 

Finally, the last substep includes the viscous corrections and imposes the boundary 
conditions, i.e. 

where yo is a weight coefficient of the backwards differentiation scheme employed 
(Karniadakis et al. 1991). 

The above time treatment of the system of equations (1) results in a very efficient 
calculation procedure as i t  decouples the pressure and velocity equations as in 
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(A 1 b, c) and (A la). High-order time accuracy of this splitting scheme is achieved by 
solving the pressure equation (A 1 b,  c)  in the form 

along with the consistent high-order pressure boundary condition (see Karniadakis 
et al. 1991) 

where n denotes the unit normal to the boundary r. Equation (A 2) is a Poisson 
equation with constant coefficients, which can be rewritten in the standard form 

VZ$ = g(x), (A 4) 

where we have defined $ = pn+l, and g(x)V. (6/At) .  In the following $A 2 we will refer 
to this equation in order to discuss the spatial discretization of (A 1)  using the 
spectral-element method. 

A 2. Spectral-element methodology 
The spatial discretization of (A 4) is obtained using the spectral-element methodology 
(Patera 1984; Karniadakis, Bullister & Patera 1985; Maday & Patera 1987; 
Karniadakis 1989, 1990). For a nominally two-dimensional geometry two different 
approaches can be followed. First, Fourier expansions can be used to represent data 
and field variables along the spanwise (homogeneous) direction ; the problem is then 
reduced to solving M two-dimensional problems each time step (here M is the number 
of Fourier modes) ; the only coupling in z is through the nonlinear terms, where fast 
Fourier transforms can efficiently be used (see Karniadakis 1990). The second 
formulation is more general and can accommodate non-periodic boundary conditions. 
In particular, a general (Legendre) spectral expansion can be employed in the 
spanwise direction, while two-dimensional spectral elements represent the geometry 
in all (x, y)-planes. The most general case of using general hexahedra has been treated 
in Karniadakis et al. (1985), and Maday & Patera (1987). In the standard spectral- 
element discretization the computational domain r', or Q is broken up into several 
quadrilaterals in two dimensions or general brick elements in three dimensions, 
which are mapped isoparametrically to canonical squares or cubes respectively. Field 
unknowns and data are then expressed as tensor products in terms of Legendre- 
Lagrangian interpolants. The final system of discrete equations is then obtained 
using a Galerkin variational statement. 

To illustrate the spectral-element methodology in more detail, we consider the 
elliptic model equation (A 4). for simplicity we only present the two-dimensional 
spectral-element equations, as the Galerkin spectral formulation in the spanwise 
direction is given by Gottlieb & Orszag (1977). We assume in addition homogeneous 
boundary conditions $ = 0 on r. Equation (A 4) can then be discretized using 
planar spectral elements in the plane x, y. If we define as H i  the standard Sobolev 
space that contains functions which satisfy homogeneous boundary conditions, and 
introduce test functions $ E H i ,  we can then write the equivalent variational 
statement of (A 4) as 
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The spectral-element discretization corresponds to numerical quadrature of the 
variational form (A 5 )  restricted to  the space X ,  t H:. The discrete space X ,  is 
defined in terms of the spectral-element discretization parameters ( K ,  N,, NJ, where 
K is the number of 'spectral elements', and Nl,N2 are the degrees of piecewise 
high-order polynomials in the two directions respectively that fill the space X h .  
By selecting appropriate Gauss-Lobatto points (kQ and corresponding weights 
p p Q  = p p p Q ,  equation (A 5 )  can be replaced by 

Here J i Q  is the Jacobian of the transformation from global to  local coordinates 
(2, y) * ( r ,  s) for the two-dimensional element k .  The Jacobian is easily calculated 
from the partial derivatives of the geometry transformation rZ,  ry, sZ, sy. The next 
step in implementing (A 6) is the selection of a basis which reflects the structure of 
the piecewise-smooth space x h .  We choose an interpolant basis with components 
defined in terms of Legendre-Lagrangian interpolants, hi(rj) = St,. Here, r, represents 
local coordinate and Sij is the Kronecker-delta symbol. It was shown by Patera 
(1984) and Ronquist (1988) that such a spectral-element implementation converges 
spectrally fast to the exact solution for a fixed number of elements K and Nl. 2, --f co, 
for smooth data and solution, even in non-rectilinear geometries. 

Having selected the basis we can proceed to  write the spectral-element 
approximation for q5k,  (or + k )  as follows: 

q5k = & n h m ( r ) h n ( s )  V m, n€(O,...,Nl),(O,...,N,), (A 7a)  

where q5kn is the local nodal value of q5. The geometry is also represented using 
similar-type tensor products with same-order polynomial degree, i.e. 

(A 7 b )  

Here xLn,  ykn are the global physical coordinates of the node mn in the k element. 
This isoparametric mapping leads to a compatible pressure formulation without the 
presence of spurious modes due to ellipticity of the pressure equation (Karniadakis 

We now insert ( A  7 a ,  b )  into ( A  6) and choose test functions $mn,  which are non- 
vanishing at only one global node to arrive a t  the discrete matrix system. This 
procedure is straightforward ; the final matrix system is, 

(2, Y ) ~  = @Ln,  y",) hm(r)  h,(s) V m, n~ (0, . . . ,Nl), (0, . . . ,N2). 

1989). 

where denotes direct stiffness summation for the global system to ensure that the 
ensemble is performed in space H'. The x-component, for example, of the Poisson 
operator is given by 

'2," = PpQ J k p Q [ ( r Z ) i Q  Dp$ D p m  'nQ+ ('Z);Q DQ, DQ7& ' m p  

+ ('Z 'Z)pQ Dp$  DQfZ ' m p  + ( r Z  'Z)PQ DQj D p m  'nQ1' (A 8b) 

Here the derivative operator is defined as Dij = dh,/dz((,) ; all other parameters have 
been defined previously. The mass matrix Bf, is diagonal and is defined as Bg = pi S,. 
The y-component of the Poisson operator is defined similarly. 

The natural choice of solution algorithm for (A 8a) is an iterative procedure; to 
date both conjugate gradient techniques and multigrid methods have been 
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implemented for elliptic equations (Ronquist 1988). The advantage of the 
formulation proposed here as compared to the formulation of Ronquist (1988) is that 
the high-order splitting scheme results in decoupled, elliptic equations for the 
pressure and velocity that can be very efficiently and robustly solved using those 
iterative techniques without the need of case-dependent preconditioners or other 
convergence acceleration techniques. 
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